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Motivating example: dispersion model
The work is motivated by dispersion computer models, which typically have the follow-
ing features:

1. The input variables are usually of two types (meteorological and source), and can be
quantitative or qualitative.

2. There is substantial prior information about the distribution of the input variables
from, for example, empirical observations (meteorological) or expert prior knowledge
(source) – see Figure 1 (a).

3. These prior distributions are not usually independent, either within type (for example,
wind direction and speed is defined via a wind rose) or between type (wind direction
and source location).

4. The distributions define a joint probability density (or weight function) on the design
region, which is likely to have substantial areas of low weight. It is therefore undesir-
able to observe responses from input combinations from such areas.

Although dispersion models are generally quick to evaluate, when used routinely in, for
example, sensor placement algorithms or as part of other optimization functions, there
is a need to reduce the number of code evaluations through carefully designed computer
experiments (Santner et al., 2003). Each run of the dispersion model, for given values of
the meteorological and source variables, produces a two-dimensional function or plume
(doseage across a geographical plane). Current practice is to Monte Carlo sample from
the prior distributions for these variables to produce an “average” doseage response sur-
face – see Figure 1 (b).

(a) (b)

Figure 1: (a) The wind rose representing prior information used to generate the
Monte Carlo sample shown in Figure 1 (b). The wind speeds are taken in knots. (b)
The doseage surface obtained from averaging the number of plumes seen at each
location (x,y) over 80,000 generated plumes.

Weighted space-filling criterion
Consider k1 quantitative variables x1, . . . , xk1 and k2 qualitative variables
xk1+1, . . . , xk1+k2, with qualitative variable xj having mj levels denoted by Mj =
{1, . . . ,mj} (j = k1 + 1, . . . , k1 + k2). Following Qian et al. (2008), we define the
distance between two points x, y ∈ X = R×∏

j Mj, where R ⊂ Rk1, as

d(x, y) =

√√√√√
k1∑

i=1

(xi − yi)2 + α
k1+k2∑

j=k1+1

I[xj %= yj)] , (1)

where I[r %= s] is the indicator function that takes the value 1 if r %= s and 0 otherwise;
(1) is a weighted sum (with respect to α > 0) of the L2 distance for quantitative vari-
ables and the 0-1 distance for qualitative variables. To account for known dependencies

between two variables, we redefine the distance metric d(x, y) to include the weight
function w(y), derived from a joint distribution function across the k1 + k2 variables:

d!(x, y) = w(y)d(x, y).

The distance between a design d = {x1, . . . ,xn} ∈ X n and a point y ∈ X is then
defined as

D!(d,y) = min
x∈d

d!(x, y).

We interpret the weight function as a measure of interest in observing a response at the
point y. If w(y) = 0, all designs are considered to be arbitrary close to y, and the addition
of y will not enhance the design’s space filling properties. We define the U!-optimality
criterion, and seek a design that minimizes

φ(d) =
∫

X
D!(d, y) dW (y) , (2)

where W (·) is the distribution function corresponding to w(·). For w(y) = 1∀ y ∈ X , (2)
reduces to the standard U -optimality space-filling criterion (PROC Optex, SAS, 1995).

Illustrative example
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Figure 2: Contour plots for the variables x1, x2 at level 1 of x3, with parameters
Σ1, p1, α1 (top left), Σ2, p1, α1 (top right), Σ2, p2, α1 (bottom right) and Σ2, p2, α2 (bot-
tom left).

Consider three input variables: x1, x2 quantitative variables defined on [−3, 3] and x3

a categorical variable with three levels 0, 1, 2, and a weight function defined as a prod-
uct of the joint density of (x1, x2) from a N(0, Σ) distribution and discrete probabilities
p = (p1, p2, p3) for the levels of x3:

g(x, Σ, p) =
p

2π | Σ |1/2
exp

[
−1

2
x′Σ−1x

]

Figure 2 shows weighted space-filling designs for this example using the following
parameters: Σ = I2 (denoted Σ1) and I2 + J2 (Σ2), p = (1/3, 1/3, 1/3) (p1) and
(1/2, 1/4, 1/4) (p2), and α = 1 (α1) and 1/2 (α2).

Application to the dispersion model

Figure 3: Contour plots of a
Latin Hypercube sample of size
200 (top left), a weighted space-
filling design of size 200 (top
right) and a Monte Carlo sample
of size 200 (bottom left).

Table 1: Results from comparison with the ‘true’ surface.
Squared Error Monte Carlo Latin hypercube Weighted Space-filling

Mean 0.0070 0.0006 0.0004
St. Dev. 0.0085 0.0007 0.0007

Maximum 0.0410 0.0050 0.0054

A weighted space filling design for 7 quantitative meteorological and source variables
were found with, for example, non-uniform and dependent prior distributions for wind
speed and direction; Figure 1 (a). A comparison with a Latin Hypercube design (McKay
et al., 1979; Iman and Conover, 1982) shows similar performance (Figure 3), with both
methods producing surfaces that resemble the true surface (from 80,000 Monte Carlo
samples, Figure 1 (b)). Figure 3 also shows the results from a Monte Carlo sample of
200 runs that underperforms in comparison to both designs. Table 1 further illustrates
this difference, in terms of the mean squared error.
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